NEW NOR-SESQUITERPENOIDS OF APPARENT NARDOSINANE ORIGIN FROM THE PACIFIC SOFT-CORAL PARALEMNALIA THYRSOIDES

Richard R. Izac, Philippe Schneider, Margaret Swain and William Fenical*

Institute of Marine Resources Scripps Institution of Oceanography La Jolla, California 92093

Summary: Two new nor-sesquiterpenoids, $\underline{5}$ and $\underline{6}$, apparently related to the nardosinane class, are reported from the alcyonacean soft-coral Paralemnalia thyrsoides collected in Palau.

The widely-distributed soft-corals of the genera Lemnalia and Paralemnalia (Octocorallia, Alcyonaceae) are well known to contain sesquiterpenoids of several novel types, i.e. africanol (1) and the neolemnane type (as in $\underline{2}$)², but the more common components of these soft-corals are rearranged sesquiterpenoids of the nardosinane class, typified by $\frac{3}{2}$ (2-desoxylemnacarnol). Recently, Bowden $\underline{\text{et}}$ $\underline{\text{al}}$. suggested structure $\underline{\textbf{4}}$ for a unique nor-sesquiterpenoid isolated from collections of L. africana made in north Australia. 5 In this paper we wish to report the structures of two similar nor-sesquiterpenoids, 5 and 6, isolated from extracts of Paralemnalia thyrsoides Ehrenberg collected in Palau, Western Caroline Islands.

Standard silica gel column and high-performance liquid chromatography of the CHCl,/MeOH extract of freeze-dried P. thyrsoides yielded 33, 5 and 6 as 0.9, 0.7, and 0.6% of the extract respectively. 6 The nor-ketone $\frac{5}{2}$, mp 87-89°, analyzed for $^{\rm C}_{14}^{\rm H}_{20}^{\rm O}_3$ by mass spectrometry and offresonance 13 C NMR (Table 1), and showed [α]_D -298° (c 1.0, CHCl₃). Broad infrared absorption at 1706 cm $^{-1}$, coupled with 13 C NMR bands at 202.1 and 206.3 ppm confirmed 5 as a diketone. The remaining oxygen atom was also securely established as part of a trisubstituted epoxide based upon highly characteristic ¹H and ¹³C NMR bands (see Table 1).

Evaluation of the unsaturation inherent in the molecular formula for 5, considering the unsaturation from ketone and epoxide functionalities, indicated that 5 was bicarbocyclic. Analysis of 1 H NMR decoupling data allowed all protons to be confidently assigned (see Table 1). Two isolated sets of mutually-coupled protons were readily discerned, those at C-1 through C-4, and those at C-6 through C-9. The C-1 epoxide proton was assigned as pseudoequatorial based upon a single 4.4 Hz coupling with the equatorial proton at C-2. Molecular models indicated a dihedral angle of ca. 90° between the C-1 proton and the axial C-2 proton thus accounting for the lack of coupling. Through decoupling all protons in the C-1 - C-4 region were confidently assigned. The C-4

HO
$$\frac{1}{2}$$
 $\frac{9}{3}$ $\frac{1}{12}$ $\frac{9}{12}$ $\frac{9}{12}$

proton was assigned as axial based upon its coupling constants to the adjacent methylene at C-3 (11.7, 4.4 Hz). 1 H NMR experiments also delineated the locations and stereochemistry of the substituents at C-6 through C-9. A methyl ketone constellation was placed in an axial configuration at C-6. The ketone methyl showed slight coupling to the C-6 proton at δ 3.55, and this proton was confidently assigned as equatorial based upon a 1.4 Hz "W"-coupling with the C-8 equatorial proton. The consistent low-field shifts of the C-6 and C-8 protons confirmed the location of the second ketone at C-7.

To confirm the stereochemical assignments derived from decoupling data, experiments involving "Difference nOe" spectroscopy were conducted. Irradiation of the C-13 methyl doublet produced enhancement (in excess of 10%) of the proton at C-6, thus indicating the methyl group and C-6 proton to be equatorial substituents. The lack of enhancement of the adjacent methyl (C-14) confirmed it to be axially substituted.

The related keto-acetate $\underline{6}$, mp. 83-84°, analyzed for $C_{16}H_{24}O_{4}$ and showed $[\alpha]_{D}$ -68.5° (c 1.0, CHCl $_{3}$). The ^{1}H NMR features of this metabolite 8 were very similar to those of $\underline{5}$, with the exception that this compound possessed a secondary acetate ester. As with $\underline{5}$, ^{1}H NMR spin-decoupling experiments were critical in assigning structure $\underline{6}$. Protons at C-1 through C-4 were interrelated as in $\underline{5}$, and the methyl ketone constellation was also determined to be intact and positioned at C-6. The C-6 methine proton was observed at δ 3.25, and was coupled (J=6 Hz) to the acetate methine (C-7) at δ 5.35. Thus, the acetate $\underline{6}$ was conceived as the acetylated C-7 reduction product of the diketone $\underline{5}$.

Again using "Difference nOe" techniques, the stereochemistry of the keto-acetate could be assigned. Irradiation of the bridgehead methyl (C-14) yielded significant enhancement of the protons at C-6 and C-7. This result clearly showed that C-14 is an axial methyl, and that the C-6 and C-7 protons are on the same face of the molecule (C-6 = equatorial, C-7 = axial).

To conclusively interrelate $\underline{5}$ and $\underline{6}$, diketone $\underline{5}$ was converted to $\underline{6}$ in two steps. Forced acetylation of $\underline{5}$ with dimethylaminopyridine resulted in the production of the enol-acetate at C-7, with enolization proceeding, unexpectedly, toward C-8. Assignment of structure $\underline{7}$ for this enol-acetate was reinforced by 13 C NMR (Table 1). Hydrogenation of $\underline{7}$ yielded $\underline{6}$, which was identical in all respects with the natural product.

Nor-sesquiterpenoids are found in several terrestrial sources, and in at least one case loss of a methyl group from an apparent isopropyl substituent has been reported. 10 . This work, and the report of Bowden et al., appear to provide the first examples of nor-sesquiterpenoids from marine sources.

	C#	¹ H (C ₆ D ₆ , 360 MHz)	¹³ C (CDC1 ₃ , 20 MHz)		
		<u>5</u>	<u>5</u>	<u>6</u>	<u></u>
TABLE 1 ¹¹ H and ¹³ C NMR Assignments for compounds 5 - 7 *§† indicate assignments may be reversed	1	2.43 d (4.4)eq	57.2	57.3	57.3
	2	1.34 dddd (15.7, 7.0, 4.4, 1.7)eq 1.67 ddd (15.7, 10.8, 9.1)ax	22.0	21.5*	22.3*
	3	0.72 m	24.6	24.5*	21.5*
	4	2.02 ddq (11.7, 4.4, 6.8)ax	29.3	30.1	31.5
	5		43.6	40.3	40.9
	6	3.55 bd (1.4)eq	73.2	57.8	61.8
	7		202.1	71.1	146.3
	8	2.24 dddd (14.6, 5.4, 1.4, 1.4)eq 3.21 ddd (14.6, 13.3, 7.8)ax	36.7*	29.2*	114.1
	9	1.03 ddd (14.2, 7.8, 1.4)eq 1.92 ddd (14.2, 13.3, 5.4)ax	30.5*	24.3*	22.3*
	10		61.8	62.1	61.0
	11		206.3	208.1	208.6
	12	1.93 bs	32.5	33.6	28.3
	13	0.43 d (6.8)	15.7 [§]	15.7 [§]	15.6 [§]
	14	0.52 s	17.7 [§]	17.3 [§]	16.8 [§]
	OAc			170.1 21.2	169.1 20.9

Acknowledgements

We wish to acknowledge generous financial support for this research from the Oceanography Section of the National Science Foundation under grant OCE 80-14167. Research onboard R/V ALPHA HELIX in Palau was also a result of NSF funding. We are grateful for the taxonomic expertise provided by Dr. J. Verseveldt in the assignments of Palauan soft-corals.

References and Notes

- B. Tursch, J. C. Braekman, D. Dalose, P. Fritz, A. Kelecom, R. Karlsson and D. Losman, Tetrahedron Lett., 747 (1974).
- 2. R. R. Izac, W. Fenical, B. Tagle and J. Clardy, Tetrahedron, 37, 2569 (1981).
- 3. D. Dalose, J. C. Braekman, P. Georget and B. Tursch, <u>Bull</u>. <u>Soc</u>. <u>Chim</u>. <u>Belg</u>., <u>86</u>, 47 (1977).
- 4. B. F. Bowden, J. C. Coll, and S. J. Mitchell, Aust. J. Chem., 33, 885 (1980).
- B. F. Bowden, J. C. Coll, S. J. Mitchell, B. W. Skelton and A. H. White, <u>Aust. J. Chem.</u>, 33, 2737 (1980).
- 6. This specimen (PSC-195) was collected, September, 1979, at North Kossol Passage, Palau, W.C.I.
- 7. Compound 5 was also isolated from collection PSC-75, identified as Lemnalia africana May.
- 8. For $\underline{6}$, Ms: \underline{M}^+ -HOAc, m/z obsd. 220.1451, calc. 220.1463; IR: (CHCl₃) 3021, 1740, 1705, 1447, 1370, 1242, 1164, 1136, 1036 and 985 cm⁻¹; $\underline{1}_H$ NMR (CDCl₃, 360 MHz): δ 5.36 (1 H, ddd, J = 12.5, 6.5, 5.0 Hz), 3.25 (1 H, d, J = 6.2 Hz), 2.86 (1 H, d, J = 3.5 Hz), 2.34 (3 H, s), 2.03 (3 H, s), 1.11 (3 H, s), 0.79 (3 H, d, J = 7.0 Hz).
- 9. The direction of enolization in 5 is indicative of the atypical behavior of this β-diketone. Normal enolization involving C-6 appears to be precluded due to unfavorable steric interactions between the methyl ketone and the C-13 methyl group. Hence, 5 exists totally in the diketone form and shows only carbonyl absorption (306 nm) in the UV region.
- 10. T. Nozoe, Y. S. Cheng, and T. Toda, Tetrahedron Lett., 3663 (1966).
- 11. Proton NMR assignments were made by analysis of spin-decoupling and nOe enhancement experiments. Coupling constants, in Hertz, are shown in parentheses. Carbon NMR assignments are based upon off-resonance multiplicities and residual coupling constant correlations. The asterisk indicates that assignments in a vertical column may be interchanged.

(Received in USA 22 June 1981)